Integrating Flux Balance Analysis into Kinetic Models to Decipher the Dynamic Metabolism of Shewanella oneidensis MR-1
نویسندگان
چکیده
Shewanella oneidensis MR-1 sequentially utilizes lactate and its waste products (pyruvate and acetate) during batch culture. To decipher MR-1 metabolism, we integrated genome-scale flux balance analysis (FBA) into a multiple-substrate Monod model to perform the dynamic flux balance analysis (dFBA). The dFBA employed a static optimization approach (SOA) by dividing the batch time into small intervals (i.e., ∼400 mini-FBAs), then the Monod model provided time-dependent inflow/outflow fluxes to constrain the mini-FBAs to profile the pseudo-steady-state fluxes in each time interval. The mini-FBAs used a dual-objective function (a weighted combination of "maximizing growth rate" and "minimizing overall flux") to capture trade-offs between optimal growth and minimal enzyme usage. By fitting the experimental data, a bi-level optimization of dFBA revealed that the optimal weight in the dual-objective function was time-dependent: the objective function was constant in the early growth stage, while the functional weight of minimal enzyme usage increased significantly when lactate became scarce. The dFBA profiled biologically meaningful dynamic MR-1 metabolisms: 1. the oxidative TCA cycle fluxes increased initially and then decreased in the late growth stage; 2. fluxes in the pentose phosphate pathway and gluconeogenesis were stable in the exponential growth period; and 3. the glyoxylate shunt was up-regulated when acetate became the main carbon source for MR-1 growth.
منابع مشابه
Dynamic modeling of aerobic growth of Shewanella oneidensis. Predicting triauxic growth, flux distributions, and energy requirement for growth.
A model-based analysis is conducted to investigate metabolism of Shewanella oneidensis MR-1 strain in aerobic batch culture, which exhibits an intriguing growth pattern by sequentially consuming substrate (i.e., lactate) and by-products (i.e., pyruvate and acetate). A general protocol is presented for developing a detailed network-based dynamic model for S. oneidensis based on the Lumped Hybrid...
متن کاملThe Shewanella oneidensis MR - 1 fluxome under various oxygen conditions
The Shewanella oneidensis MR-1 fluxome under various oxygen conditions Abstract 1 The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under 2 carbon-limited (aerobic) and oxygen-limited (micro-aerobic) chemostat conditions using 13 C 3 labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in 4 biomass were probed using both GC-MS and 13 ...
متن کاملGenome-Scale Metabolic Network Validation of Shewanella oneidensis Using Transposon Insertion Frequency Analysis
Transposon mutagenesis, in combination with parallel sequencing, is becoming a powerful tool for en-masse mutant analysis. A probability generating function was used to explain observed miniHimar transposon insertion patterns, and gene essentiality calls were made by transposon insertion frequency analysis (TIFA). TIFA incorporated the observed genome and sequence motif bias of the miniHimar tr...
متن کاملCation-limited kinetic model for microbial extracellular electron transport via an outer membrane cytochrome C complex
Outer-membrane c-type cytochrome (OM c-Cyt) complexes in several genera of iron-reducing bacteria, such as Shewanella and Geobacter, are capable of transporting electrons from the cell interior to extracellular solids as a terminal step of anaerobic respiration. The kinetics of this electron transport has implications for controlling the rate of microbial electron transport during bioenergy or ...
متن کاملTranscriptome Analysis of Early Surface-Associated Growth of Shewanella oneidensis MR-1
Bacterial biofilm formation starts with single cells attaching to a surface, however, little is known about the initial attachment steps and the adaptation to the surface-associated life style. Here, we describe a hydrodynamic system that allows easy harvest of cells at very early biofilm stages. Using the metal ion-reducing gammaproteobacterium Shewanella oneidensis MR-1 as a model organism, w...
متن کامل